Effect of Hydrated Lime & Liquid Antistrip on Stripping of HMA Mixtures

> Dallas N. Little – Texas A&M University Presented by: Amit Bhasin

Introduction

- Stripping most easily visualized form of moisture damage at asphalt aggregate interface
- Moisture Damage:

loss of strength and durability due to effects of moisture

 also includes weakening of mastic in due to moisture

Outline

- Adhesion mechanisms background to understand effect of Hydrated Lime (HL) and liquid antistrip (LA)
- Effect of HL
- Effect of LA
- Physical tests for evaluation

Detachment Displacement Hydraulic scour Pore pressure Environmental pH instability **Spontaneous emulsification** Two classes: Mechanical Chemical

Chemical Reactions:

- Nitrogen compounds from asphalt adhere strongly to aggregate surface
- Carboxylic acids (COOH) adhere to aggregate surface – easily removed in water

(Robertson 2000)

Chemical Reactions:

- Monovalent cation salts at interface easily removed
- Divalent cation salts at interface more difficult to remove

(Plancher 1977, Scott 1978, Petersen 1987, Robertson 2000)

pH Instability:

- Adhesion decreases as pH of water is increased from 7 to 9
- Different bitumen aggregate environment create different pH levels of water

(Scott 1982, Yoon & Tareer 1988)

Surface Energy:

- Relative wettability of aggregate by asphalt and water
- Distribution of polar groups in both asphalt and aggregate surface impacts adhesion and debonding

Absence of HL: SiOH from aggregate surface react with COOH from bitumen...

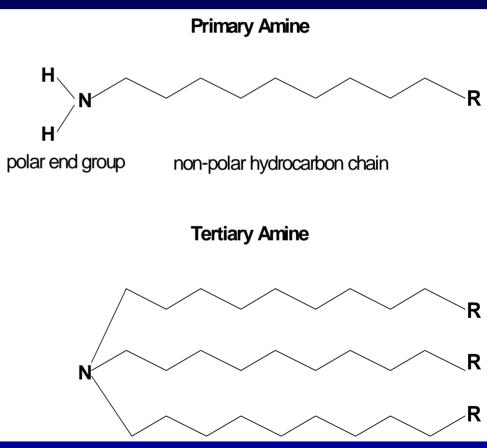
Resulting bond is weak and easily broken in water

Presence of HL improves stripping potential via 3 main mechanisms:

1.Ca⁺⁺ from HL react with COOH to form Ca salts Relative low solubility of Ca salts in water – improves moisture resistance (Plancher 1977, Hicks 1991)

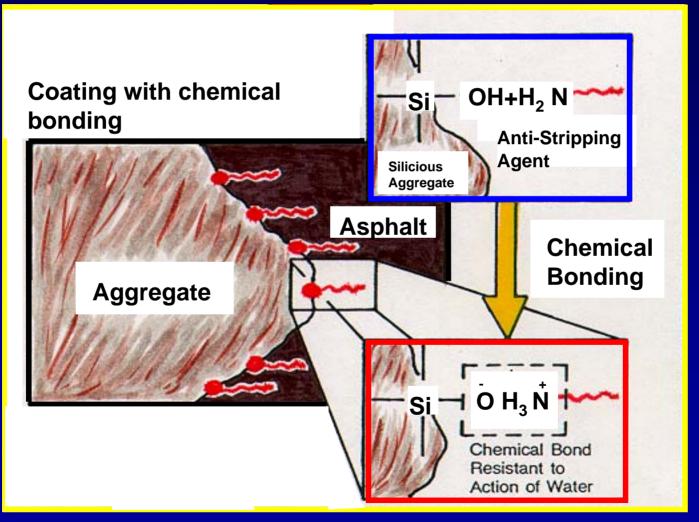
2.Ca⁺⁺ from HL react with COOH Reaction between SiOH from aggregate surface and COOH is prevented

Leaves SiOH sites "open" for Nitrogen compounds (pyridines) from bitumen to interact & form strong adhesive bonds (Petersen 1987)


3.Ca⁺⁺ salts migrate to aggregate surface and displace Na and K cations

Easily soluble Na and K cation sites are replaced with low solubility Ca sites (Schmidt and Graf 1972)

Effect of Liquid Antistrip


Characteristic:

- Polar amine end group – bond with siliceous aggregate surface
- 2. Hydrocarbon chain– part of bitumen

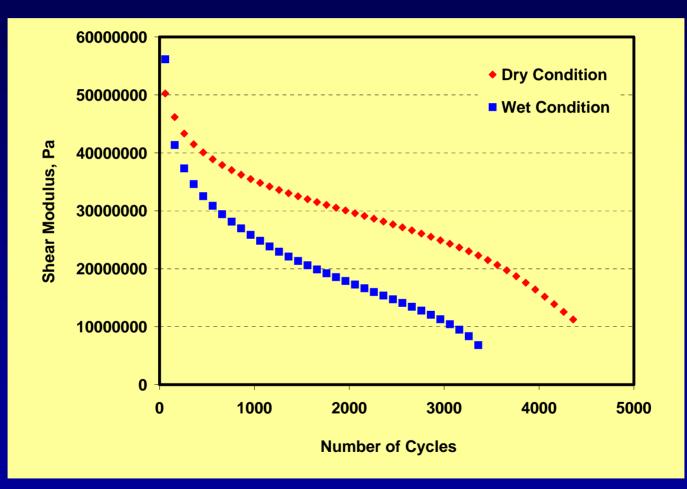
(Logaraj 2002)

Effect of Liquid Antistrip

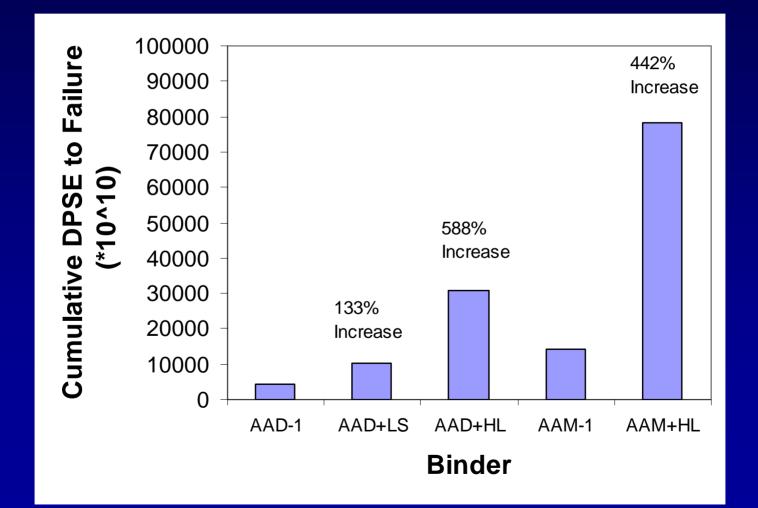
(Logaraj, 2002)

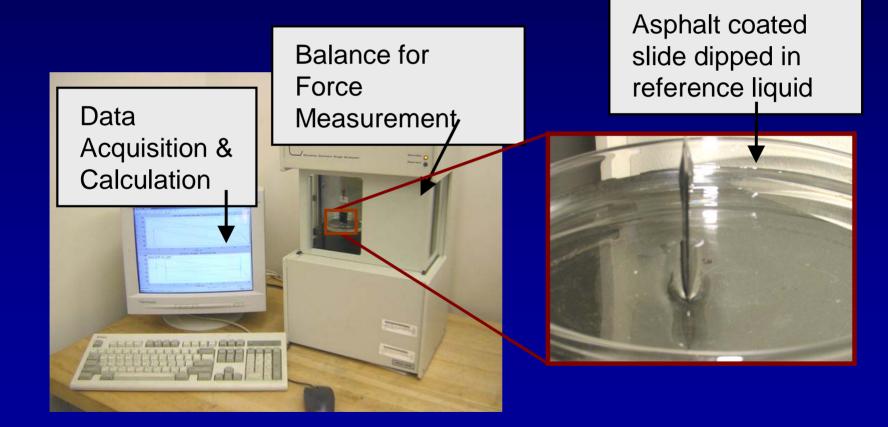
Effect of Liquid Antistrip

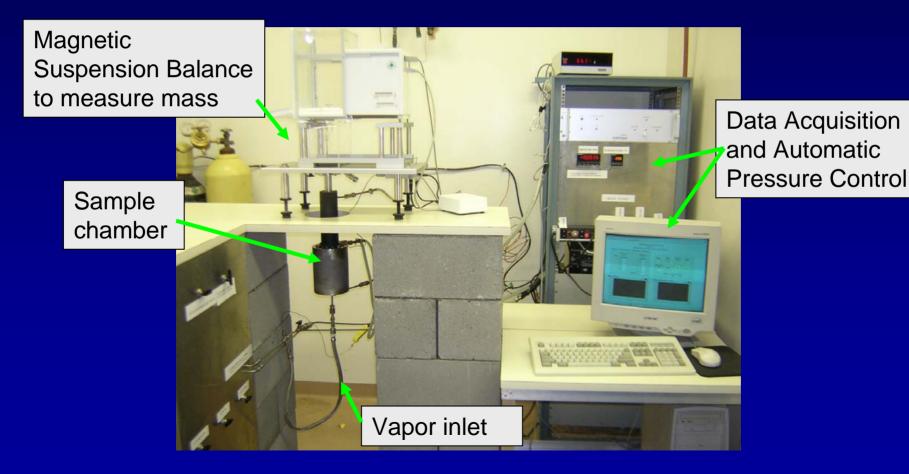
- Length of hydrocarbon chain (R) and number of amine groups influence adhesion
- Fatty amines enable asphalt to wet aggregate surface
- Hydrophobic, hydrocarbon chain of the fatty amine is anchored in bitumen (bridge)


Surface Energy

- Addition of HL & LA increases polar component of bitumen surface energy
- Increased polar component
 - higher adhesive bond strength at bitumen aggregate interface
 - higher wettability of bitumen on aggregate surface


Fast effective test


 Useful for evaluating performance of mastic – fatigue and moisture damage



Asphalt	Mineral Filler	N _f (dry)	N _f (wet)
AAM-1	Limestone	4,000	2,100
AAM-1	Hydrated Lime	8,200	6,200
AAD-1	Limestone	5,200	2,500
AAD-1	Hydrated Lime	10,000	8,500

Typical Aggregate Values

Aggregate	Surface Energy Components (ergs/cm ²)			
	Γ^{LW}	Γ+	Γ-	Γ^{Total}
Gravel	61	20	1067	350
Limestone	58	6	340	144
Granite	50	0.1	400	60

PG 64-40 + Gravel System

Asphalt (Abbreviation) PG 64-40	Surface Energy Components (ergs/cm ²)			
	Γ^{LW}	Γ+	Γ-	Γ^{Total}
Neat	14.6	3.3	0.2	16.3
+ HL	10.7	5.4	0.1	12.3
+ LA	18.7	4.0	1.7	24.0

PG 64-40 + Gravel

Mix	Total		Moisture Damage		Bond Strength (ergs/cm ²)	
	Pass es (x1000)	Rut Depth (mm)	Pass es (x1000)	Rut depth (mm)	Dry	Wet
Neat	4.5	9.5	3.1	5.8	183	-178
+ HL	20.0	9.3	none	none	206	-154
+ LA	20.0	8.9	none	none	211	-166

PG 64-22 + Limestone

Asphalt (Abbreviation) PG 64-22	Surface Energy Components (ergs/cm ²)			
	Γ^{LW}	Γ+	Γ-	Γ^{Total}
Neat	13.3	3.7	0.1	14.6
+ HL	25.2	0.8	0.1	25.8
+ LA	25.6	0.7	6.0	29.8

PG 64-22 + Limestone

Mix	Total		Moisture Damage		Bond Strength (ergs/cm²)	
	Pass es (x1000)	Rut Depth (mm)	Pass es (x1000)	Rut depth (mm)	Dry	Wet
Neat	15	11	9.7	2.5	128	-64
+ HL	7.5	8.3	4.3	2.6	112	-83
+ LA	6.5	8.3	3.5	2.7	120	-96

Conclusions

- Different levels of improvement in stripping properties by addition of HL and LA
- Improvements can be explained based on:
 - chemical mechanisms
 - adhesion theories
 - mechanical mechanisms (HL)

Conclusions

- Synergetic effect of various mechanisms
- Impact of filler will differ from case to case basis
- DMA as a tool for mastic durability
- Surface energy as a tool for selecting "right" filler for a system

Conclusions

- Not all PG grades are alike! Need to better understand mechanisms to control physical properties
- Further research:

- Optimal dosing of fillers using tools such as surface energy

- Influence of pH and fillers in improving stripping resistance